1. What value of x will make $DE \parallel AB$ in the given figure?

![Triangle Diagram]

2. In figure, DE is parallel to base BC. If $AD = 2.5 \text{ cm}$, $BD = 3.0 \text{ cm}$ and $AE = 3.75 \text{ cm}$, find the length of AC.

![Triangle Diagram]

3. In the figure, $XY \parallel BC$. Find the length of XY.

![Triangle Diagram]

4. In figure, considering triangles BEP and CPD, prove that:
 \[BP \times PD = EP \times PC \]

![Triangle Diagram]

5. If $\triangle ABC \sim \triangle PQR$. Also $\text{ar}(\triangle ABC) = 4 \times \text{ar}(\triangle PQR)$. If $BC = 12 \text{ cm}$, find QR.

6. The areas two similar triangles ABC and DEF are 36 cm^2 and 81 cm^2 respectively. If $EF = 6.9 \text{ cm}$, determine BC.

$\text{Area}(\triangle ABC) = 36 \text{ cm}^2, \text{Area}(\triangle DEF) = 81 \text{ cm}^2, EF = 6.9 \text{ cm}$

7. Two isosceles triangles have equal angles and their areas are in the ratio $81:25$. Find the ratio of their corresponding heights.

8. D, E and F are respectively the mid points of the sides BC, CA and AB of $\triangle ABC$. Find the ratio of the areas of $\triangle DEF$ and $\triangle ABC$.

9. The perimeters of two similar triangles are 36 cm and 48 cm respectively. If one side of the first triangle is 9 cm, what is the corresponding side of the other triangle?

10. In triangle ABC, $AB = \sqrt{3}a$ and $BC = 2a$. Prove that

 ![Triangle Diagram]

11. In triangle ABC, $\angle BAC = 90^\circ$ and $AD \perp BC$. If $BD = 8 \text{ cm}$, $DC = 18 \text{ cm}$, find AD.

12. Two poles of height 8 m and 13 m stand on a plane ground. If the distance between their tips is 13 m, find the distance between their feet.

13. The perpendicular from A on side BC of a triangle ABC intersects BC at D such that $BD = 3CD$. Prove that $2AB^2 - 2AC^2 = BC^2$.

14. In an isosceles triangle ABC with $AB = AC$, BD is a perpendicular from B to the side AC. Prove that $BD^2 = CD^2 = 2CD \cdot AD$.

15. P and Q are points on the sides CA and CB respectively of a $\triangle ABC$ right angled at C. Prove that $AQ^2 + BP^2 = AB^2 + PQ^2$.

16. In figure, T trisects the side QR of right triangle PQR.

 Prove that $8PT^2 = 3PR^2 + 5PS^2$.

17. If BL and CM are medians of a triangle ABC right angled at A, then prove that $4(\text{BL}^2 + \text{CM}^2) = 5 \text{BC}^2$.